
Journal of Engineering Physics and Thermophysics, VoL 64, No. 5, 1993 

B I O L O G I C A L  T I S S U E  D E S T R U C T I O N  

I R R A D I A T I O N  

V. N. Vasiliev and S.K. Serkov 

UNDER LASER 

UDC 536.423.16 

Physical processes proceeding in a biological tissue under laser irradiation are described. Based on evaluation 

of all heat-mass transfer processes, a model of biological tissue destruction is proposed as the multiboundary- 

value Stefan problem with stepwise variation of thermophysical parameters at phase boundaries. To check the 

model adequacy, a one-dimensional problem has been numerically solved which makes it possible to determine 

the dimensions of carbonization zones and the boundary velocities. Analysis of the results obtained allows a 

conclusion to be made about the model adequacy to real processes of biological tissue destruction. 

The problem of laser radiation-substance interaction goes back to the time when lasers of sufficient power 

were designed. Many experimental and theoretical works were carried out to investigate the interaction of radiation 
with homogeneous materials (metals). The processes of sublimation, photoablation, and photodestruction were 

studied. Destruction of a material with a complex chemical composition and an inhomogeneous structure may proceed 

in several steps and be accompanied by processes of chemical pyrolysis,.giving rise to several phase boundaries [5, 

6 ]. As for the interaction between high-energy radiation and an organic tissue, it combines the all possible destruction 

mechanisms [7, 8 ] and physical processes occurring with inorganic materials [9 ]. By virtue of this, mathematical 

consideration of these problems is impossible without preliminary development of a physical model of the process 
with certain assumptions. 

Now we analyze the physical processes in the case when an organic tissue of epidermis is exposed to laser 

radiation with 200-mJ energy and pulse duration of 200/~sec. According to the investigation [7 ], the corresponding 

power density 4.104 W/cm 2 of focused radiation on the tissue causes its evaporation. Unlike photodestruction and 

photoablation, the evaporation processes are of a prolonged character (10-3-1 sec), which allows definite conclusions 

to be drawn about stable phase boundaries upon destruction, and, therefore, mathematical formulation of the problem 

is reduced to the multiboundary-value Stefan-type problem. Next considering the destruction process, it is necessary 

to choose a model of the tissue structure. Let the epidermis be a composite material with interpenetrating components 

of carbon (10 %) and water (90 %), with the mean radius r of pores filled with water being smaller than the wavelength 

of incident radiation. This model is, naturally, abstract but it allows one to gain insight into the majority of such 

physical processes of destruction as evaporation of the aqueous component of the tissue, efflux of formed gases over 

the carbon skeleton, and destruction of the latter. These processes result in formation of two phase boundaries: 

epidermis-carbon skeleton and carbon skeleton-ambient air. A value of the pore radius less than the wavelength 

provides simplification of the boundary conditions. In this case the radiation does not penetrate inside the body and 

is fully absorbed on the surface (owing to the emissivity factor of the carbonized layer of the tissue being close to 
unity). Mathematically, the heat conduction equations corresponding to the given model are as follows: 

aT 0~ 
c~p~ ~ ---- ~'1 ~ ,  ~ < x ~ .~2; (1) 

dx Ox 2 

• 02T 
c2p~ . . . .  ~.2 , x > ~2. (2) 

dx Ox 2 

Heat capacities per unit volume ClPl, czo2 and thermal conductivities 21, 22 are calculated proceeding from 
the tissue structure in the following manner 
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ctpx = Cc Pc (l - -  ll), cop+ = CH,o9~,oII + Cc Pc (I - -  rl), 

~ a l r  
Xx ------- kc [c z + v (l - - c )  a + 2re (I - -  c)('vc + 1 - -  c) - l ] ,  v = - -  

Xc 

~H,O ~-2 = ;~c[ c2 + v ( l  - - c )  2 + 2vc( l  + c ) ( v c +  1 - - c ) - l l ,  v = - -  
%c 

Here c is a parameter  characterizing the porous structure. 

Conditions at the boundaries ~1, ~z are of a form typical for the Stefan problems: 

--)~1 O@l =-q--PcLt( l - -117)  d~a �9 
+.+:+;, d - - "~  ' (3) 

x 0 r l  x 0 r l  d++ 
- -  t - - - ~ x  ]x:+~:;__ 4- ~ - - 0 x  Ix=~2+ ----" IIPH'~ d'c (4) 

To close the equations, it is necessary to have two more relations. In the Stefan problem (the liquid-solid 
boundary) it would be the equality of temperatures of both phases. However, in the given case sublimation proceeds 

(the gas-solid boundary)  and for it in [1 ] an equation for the front velocity as a function of temperature is proposed: 

d~, ( L I A , )  
= a exp " �9 (5) 

dz RT1 , 

For the boundary  ~2, the front velocity of evaporation out of the porous structure will depend on the depth 

of the evaporation zone 6 = I ~2 - ~11 (for a free-molecular flow pattern) [10 ]: 

(," L,,A.+ ) 
c~ t !x  t3 - + 

d~,, _._ \ RTo (6) 

dT 1 -t - - - ~ 6  
2r 

Thus, equations (1), (2) with boundary conditions (3) through (6) represent a closed mathematical statement 

of the Stefan problem with two moving boundaries. Now we pass to a moving coordinate system related with ~1: 

Then the equations will acquire the form 

X ~  X - - - U T ,  U ~  ------~--~ 
dz 

OT d[l dT ] 02T 
cp + = ~,---=-- 

Ox d~c 0-s Ox" 

Hence it is easily seen that we may introduce two scales of time: t* = L2qo/2 related with heat transfer by 

conduction and t = cpL/v related with boundary motion. Since t < t ,  the boundary motion makes a large 

contribution to temperature field variation. 
It should be emphasized that for the quasi-stationary case introduction of the moving coordinate system 

makes it possible to obtain simple analytical expressions for the temperature field in the tissue. The velosities of 

boundary motion d~l/d~ and d~2/dT in this case are equal and t ime-independent 

+) 
a l  

1 - -  exp ( al  1 - -  exp (k-- v___8_6a, 

al = Xl (clPl) -1, 0 < x < 6, 
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Fig. 1. Temperatures of phase boundaries t (~ as a function of time ) ~:(sec): 
1) tl; 2) t2. 

Fig. 2. Time variation z (sec) of motion of phase boundaries d (ram): 1) ~ 1; 
2) I ~ 2 - ~ 1 .  

;' vx ] 
T2 exp ~ a= 

T -- ' x > 6, a,a = Lz (cz92) -1. 
exp - -  - - .  

a2 

Here T1, T2, v, and 6 are the constant functions of tissue thermophysical properties. 

In the general case, Eqs. (1) through (6) are nanlinear and nonstationary. Based on the analysis of charac- 
teristic times of the process we may conclude that the characteristic time of the boundary motion is smaller than that 
of heat propagation in the body. Therefore the boundary conditions (3), (4) accounting for substance sublimation 

determine the temperature field principally, while Eqs. (1), (2) allowing for heat propagation by conduction only 
correct the results (smooth the temperature field). Now we transform boundary conditions (3), (4) to a form 
convenient for numerical calculations. For this, we replace the temperature derivatives by finite differences and take 

the logarithm of the expression obtained. As a result, for each time layer we have a system of two nonlinear equations 
for the temperatures of the phase boundaries T1 and T2: 

L~A~ (7) 
T~ -i- :--~ 0; 

R In [(q + LlhTa)(,ocL~a (1 --. I1)) -x] 

T~ + L2Ae = 0. (8) 

R l n [ ( l  + 6--~t(~oST~---L1ATY2)(llPH,oLza)-lJ 
�9 2 r  / " 

The temperatures Ti are found by solving the difference equations corresponding to the system of Eqs. 
(1)-(2) with the Dirichlet conditions at the boundaries: 

Clpa [ T{~-- T~ -1 ( L1A1 ) T i + I - - T ~ - I  "] 
a exp -= m RT7 2h 

/7.2 

(9) 

c29=. m a exp L1A1 T / ~ + I - - T i - I ]  : 2 h  
(10) 
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Fig. 3. Boundary velocity ~i/v, 10 -4 m/sec (1) and interphase distance I ~2 - 
~l I, 102pro (2) versus supplied radiative power P, W. 

Fig. 4. Temperatures of phase boundaries as a function of supplied radiative 
power: 1) h;  2) t2. 
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TI}--=0 -- T1; (11) 

T[7= 8 = T2. (12) 

The nonlinear system (7) through (12) is solved by the successive refinement method with respect to T1 and 

T2. On each refinement the temperatures {T j} are calculated from fresh solutions of the difference equations 

(9)-(12). 
The positions of the boundaries ~1 and ~2 at each time step are found from relations (5), (6) using the implicit 

Euler scheme. In going to the next time step, the position of the boundaries and the network are rearranged. Thus, 

the nodes of the network are not fixed in time. To solve the nonstationary problem, it is necessary to know the 

temperature value at any points between the nodes; therefore use is made of the spline-interpolatio of the network 

function of the temperature of the previous time layer. 

Solving the problem yielded temperature field distributions and dependences of the motion of the boundaries 

and the temperature of the phase fronts on time. The heat flux entering (3) is calculated in terms of the radiative 

power and the degree of its focusing. When a light guide is used to transfer radiation, 

Figures 1 and 2 characterize the temperature variation of the boundaries and their motion with time for the 

radiation power P = 1 W and a light guide diameter of 400pro. It is seen that tissue destruction proceeds in two steps: 

the first step involves heating and an increase of the temperatures T1 and T 2 and the distance between phases 6. At 

this stage the processes are nonstationary; practically no material sublimation (motion of the boundary ~1) proceeds. 

At the second stage the problem may be treated as a quasi-stationary one. The boundary temperatures T 1 and T 2 

and the distance between the phases are stabilized at certain values. Figures 3 and 4 represent the dependences of 

T1, T2, and 8 on the supplied radiative power. The boundary motion acquires a linear character. Figure 3 depicts the 

boundary velocity ~1 as a function of the supplied power (with an increase of P the velocity increases logarithmically). 

The time when the system comes to the quasi-stationary solution may be characterized by the relaxation 
time. For P = 1 W, �9 - 1.3 sec, while for P = 10 W, v - 0.08 sec. These quantities are given for an emissivity factor 

equal to unity, which corresponds to complete absorption of radiation at TI < T]t. With an account of the dependence 

e(T1), T will increase. 
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The results of solution of this problem are applicable for investigations in medicine and for optimization of 

the practice of using laser scalpels [11-13 ]. Of importance are such integral quantities as the relaxation time, the 

boundary velocity, and the interphase distance. The characteristic c5 refers to the dimensions of the carbonization 

zone and, consequently, may serve for evaluation of the tissue necrosis zone. The velocity ~1 and the relaxation time 
characterize the effectiveness of lasers as applied for making incisions. 

N O T A T I O N  

Cc, heat capacity of carbon; p c, carbon density; 2c, carbon thermal conductivity; CH20, heat capacity of water; 
P H 2 0  , water density; 2H20 , w a t e r  thermal conductivity; ~-air, air thermal conductivity; "c, time; x, coordinate in a 
moving system; x, coordinate in a fixed system; T, temperature; L1, enthalpy of carbon sublimation; L2, enthalpy of 

water vaporization; A1, molecular mass of carbon; A2, molecular mass of water; R, universal gas constant; a, sound 
velocity; P, radiative power; Ro, light guide radius; II, tissue porosity; q, heat flux over a surface; r, radius of pores; 

~1, phase boundary of air-carbon; ~2, phase boundary of carbon-tissue; TI, temperature at the boundary ~1; T2, 

temperature at the boundary ~2; c~, depth of the evaporation zone; v, destruction rate; Tin, network function of the 

temperature at the n-th node and at the j-th time step; h, mesh width used for a space variable; m, time step. 
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